
Yiyang	Chang,	Ashkan	Rezaei,	Balajee	Vamanan,	
Jahangir	Hasan,	Sanjay	Rao	and	T.	N.	Vijaykumar

Hydra:	Leveraging	Functional	Slicing	
for	Efficient	Distributed	SDN	
Controllers

SDN	is	becoming	prevalent

§ Software	defined	Networking	(SDN)	becoming	prevalent	in	
datacenter	and	enterprise	networks	
ü Centralized	state	à Fine-grained	management	

§ high	network	utilization
ü Wide	adoption	in	industry	WANs

§ Google	(B4,	SIGCOMM ‘13)
§Microsoft	(SWAN,	SIGCOMM’13)

§ Consolidate	state	at	a	central	controller
§ Single	physical	controller	for	small	networks	
§ Distributed	implementation	for	large	networks

2

Heterogeneity	in	SDN	applications
§ SDN	applications	place	varying	demands	on	underlying	
machine
1. Real-time:	periodically	refresh	state	

§ e.g.,	heart-beats,	link	manager
§ deadline	driven,	light	load	

2. Latency-sensitive:	invoked	during	flow	setup
§ e.g.,	path	lookup,	bandwidth	reservation,	QoS
§ latency	sensitive,	medium	load	

3. Computationally-intensive:	triggered	during	failures	
§ e.g.,	shortest	path	calculation	
§ affect	convergence,	heavy	load	

3

Distributed	controller	must	handle	both	
network	size	and	application	heterogeneity

Previous	work:	topological	slicing

§ Conventional	approach:	topological	slicing
§ partition	network	topology:	one	physical	controller	for	
each	network	partition
§ all	network	functions	run	in	each	partition

✘ one-size-fits-all:	all	apps	use	same	partition	size
§ Topological	slicing	co-locates	all	applications	

§ Computationally-intensive	apps	susceptible	to	load	
spikes

✘ affects	co-located	real-time/latency-sensitive	apps
✘ Administrative	constraints	on	partition	sizing	

4

topological	slicing	is	agnostic	of	application	
heterogeneity	and	does	not	scale	well	

Hydra’s	contributions

1. Functional	slicing:	split	control	plane	applications	across	
servers
ü adds	new	dimension	to	partitioning,	more	freedom	for	

placement
✘ Increase	latency	if	critical	paths	span	multiple	servers

2. Communication-aware	placement
§ cast	as	optimization	problem	

ü multi-constraint	graph	partitioning
3. Shields	real-time	apps	from	other	apps	

§ uses	thread	prioritization

5

Hydra	shows	better	performance	for	each	app	category	
and	scales	better	than	topological	slicing

Outline

§ Introduction
§ Background	
§ Hydra

§ Goals
§ Functional	slicing	
§ Hybrid	of	functional	and	topological	slicing	
§ Communication-aware	placement

§ Key	results	
§ Conclusion	

6

Topological	slicing

§ Network	is	partitioned	into	multiple	controller	domains	
§ Each	controller	instance	hosts	all	control-plane	apps	

§ but	handles	events	only from	switches	in	its	partition

7

Server 1

Partition 1 Partition 4Partition 2 Partition 3

f1()

f2()

f3()

f4()

Server 4

f1()

f2()

f3()

f4()

f1() f2() f3() f4() Server 3

f1() f2() f3() f4()Server 2

Shortcomings	of	topological	slicing

§ Sustainable	throughput	limited
§ compute/memory	capacities	of	server	must	be	sufficient	
to	handle	all apps

§ Possible	solution:	increase	#	of	partitions	
§ Increasing	#	of	partitions	causes	other	problems

✘ Worsens	convergence
§ time	to	recalculate	paths	during	link/switch	failure

✘ Slow	updates	àWrite-heavy	apps	suffer

8

Topological	slicing	co-locates	all	apps	à requires	higher	#	
of	partitions	à affects	scalability

Outline

§ Introduction
§ Background	
§ Hydra

§ Goals
§ Functional	slicing	
§ Hybrid	of	functional	and	topological	slicing	
§ Communication-aware	placement

§ Key	results	
§ Conclusion	

9

Hydra:	goals	and	techniques

1. Partitioning	must	help	scalability	without	worsening	state	
convergence
§ Functional	slicing

2. Place	applications	without	worsening	latency
§ Communication-aware	placement

3. Isolate	real-time	applications	from	load	spikes
§ prioritize real-time	apps	over	other	apps

10

Functional	slicing
§ Split	control-plane	apps	among	multiple	servers

ü Better	convergence	(apps	have	complete	network	state)
✘ Increases	latency	for	events	spanning	>1	app

§ e.g.,	handling	a	packet-inmight	could	involve	inter-
controller	communication

11

Communication-aware	placement

§ Step-0:	find	partition	size	based	on	critical	app(s)
§ Typically,	topology	application	is	critical

§ Determine	app	slice	<>	server	mapping
§ Objective:	minimize	latency
§ subject to	capacity	and	communication constraints	

§ Inputs
§ applications’	CPU,	memory	demand	
§ aggregate	server	CPU	and	memory	capacity
§ communication	graph

§ compute-intensive	apps	(e.g.,	topology	app)	placed	in	
separate	machines	to	avoid	interference

12

Mathematical	formulation	in	the	paper	

Communication-aware	placement	(cont.)

§ An	instance	of	multi-constraint	graph	partitioning
§ a	known	NP	hard	problem	
§ use	existing	heuristics	to	solve	in	reasonable	time	

13

f1

f2

f3

f4

Hydra’s	approach:	hybrid	of	functional	and	
topological	slicing

§ hybrid	of	topological	and	functional	slicing

14

Communication-aware	placement	achieves	better	
convergence	without increasing	latency

Odds	and	ends

§ Our	model	can	be	extended	to	accommodate
§ dynamic	load	changes
§ replicated	controllers	(fault	tolerance)

Details	in	the	paper

15

Outline

§ Introduction
§ Background	
§ Hydra

§ Goals
§ Functional	slicing	
§ Hybrid	of	functional	and	topological	slicing	
§ Communication-aware	placement

§ Key	results	
§ Conclusion	

16

Methodology

§ Floodlight controller	
§ Apps

§ Dijkstra's	shortest	path	computation	(DJ)
§ Firewall	(FW)
§ Route	lookup	(RL)
§ Heartbeat	handler	(HB)

§Modified	CBench	à load	generation
§Mininetmodels	control	plane	à doesn’t	scale

§ Topology	
§ Datacenter	network	à fat-tree	

§ ~2500	switches

17

Convergence	time

18

Topological	slicing	requires	higher	#	partitions	à worsens	
convergence

Topo.	slicingFunc.	slicing

CPU	demand	

19

DJ’s	demand depends	on	#	partitions;	
other	apps	sensitive	to	network	load	(packet-in)	

Placement	results

§ Available	capacity:	4	servers,	4	cores	per	server
§ Topological	partitioning	co-locates	all	apps	à requires	
>=	16 partitions	
§ 16	partitions	=	16	controller	instances	=	one	per	core	

§ Functional	slicing	reduces	demand	
à Hydra requires	fewer	than	16	partitions (i.e.,	8)
§ each	partition	hosts	two	controller	instances

§ Packet-in pipeline:	communication	between	RL	and	
FW	à one	for	DJ,	one	for	{RL,	FW,	HB}

§ HB	is	prioritized	over	other	apps

20

Hydra’s	scalability

21

Hydra scales	better	than	topological	slicing	by	
isolating	compute-intensive	apps	from	other	apps

Real-time	performance

0

10000

20000

30000

40000

50000

60000

70000

10000 20000 30000 40000 50000 60000

C
on

tro
lle

r's
 th

ro
ug

hp
ut

(p

ac
ke

ts
/s

ec
on

d)

Load (packets/second)

Topo. Hydra

Fig. 5: Scalability of latency-sensitive applications in Hydra

only one edge between RL and FW, as RL and FW are the
only applications that lie in the critical path of flow’s path
setup; DJ and HB do not have edges between them or to
either RL or FW. From figure 4 and table I, it is straight
forward to see the difference between Topological slicing’s and
Hydra’s placement decisions. Topological partitioning requires
16 controller instances (16 partitions) requiring 16 cores. Each
instance would host all the applications. In contrast, Hydra
creates 8 network partitions (minima in figure 3). For each
partition, it assigns two controller instances which run on
separate CPU cores. While one controller instance hosts DJ for
that partition, another instance hosts all the other applications
– RL, FW, and HB. While we could manually calculate
optimal placements in this simple controller, deployment-
scale controllers would likely consist of tens of applications
with complex communication patterns, and, therefore, would
require a rigorous approach such as Hydra. Unfortunately, it
is harder for researchers to experiment with production-scale
controllers without access to production-scale networks and
workloads.

C. Latency-sensitive applications

In this experiment, we compare the performance of latency-
sensitive applications in one network partition. Recall that
Hydra creates 8 network partition (1/8th switches) as opposed
to topological slicing which creates 16 partitions (1/16th
switches). In figure 5, we compare the scalability of latency-
sensitive applications in Hydra vs. topological slicing. We
show load (injected packets per second) along X-axis and
the achieved throughput after route lookup (RL) and firewall
processing (FW) along Y-axis. As we can see, Hydra scales
well beyond 60, 000 packets per second whereas topologi-
cal slicing saturates at about 40, 000. As a result, latency-
sensitive events incur high queuing inside the controller in
the case of topological slicing. It is also interesting to note
that even though Hydra handles events from a larger number
of switches, the latency-sensitive applications (RL and FW)
are isolated from the load spikes caused by computationally-
intensive DJ application, thanks to functional slicing.

Hydra
Topo

Fig. 6: Performance of real-time apps. in Hydra

with Pri.

w/o Pri.

Fig. 7: Isolation of prioritization’s gains

D. Real-time applications

Separating computationally-intensive DJ application also
helps our real-time heart-beats (HB) application. Figure 6
shows the CDF of heart-beat latency between Hydra and
topological slicing. Our default heart-beat frequency is 10
heart-beats per second. We see a marked difference between
the two – while Hydra’s 95th and 99th %-iles are about
10 ms, topological slicing’s 95th %-ile is about 30 ms.
With a deadline of 100 ms (i.e., periodicity of heart-beats),
topological slicing would suffer about 3% missed deadlines,
whereas Hydra would not miss any. While 3% may look like
a small number, but penalty for missed deadlines is very high
(i.e., missed deadlines trigger expensive path recomputation
which would further exacerbate the problem).

E. Isolating the impact of prioritizing

In this section, we isolate the gains from prioritizing real-
time applications over latency-sensitive applications. In figure
7, we compare the CDF of heart-beat latency between Hydra

with Pri.
w/o Pri.

Fig. 8: Sensitivity to heart-beat rate

22

Hydra’s	thread	prioritization isolates	
heart-beats	from	other	apps

Conclusion

Hydra	is	framework	for	distributing	SDN	functions
§ Incorporates	functional slicing	
§ Communication-aware	placement	
§ Thread	prioritization
§ Results	show	importance	of	Hydra’s	key	ideas

§ Future	work
§ Infer	communication	graph	using program	analysis
§ Incorporate	apps’	consistency	requirements	into	model

23

Hydra’s	gains	potentially	higher	in	large	scale	deployments

