Hydra: Leveraging Functional Slicing
for Efficient Distributed SDN
Controllers

Yiyang Chang, Ashkan Rezaei, Balajee Vamanan,
Jahangir Hasan, Sanjay Rao and T. N. Vijaykumar

UNIVERSITY

@ PURDUE GO ~ gle

SDN is becoming prevalent

= Software defined Networking (SDN) becoming prevalent in
datacenter and enterprise networks

v Centralized state = Fine-grained management
" high network utilization

v Wide adoption in industry WANSs
" Google (B4, siccomm “13)
= Microsoft (SWAN, siccomm’13)

= Consolidate state at a central controller
= Single physical controller for small networks
= Distributed implementation for large networks

U BES FooNDATON \—,Z ¥ OPEN
ONOs

pen Networ k Operating System

Heterogeneity in SDN applications

= SDN applications place varying demands on underlying
machine

1. Real-time: periodically refresh state
" e.g., heart-beats, link manager
= deadline driven, light load
2. Latency-sensitive: invoked during flow setup
= e.g., path lookup, bandwidth reservation, QoS
= |atency sensitive, medium load
3. Computationally-intensive: triggered during failures
" e.g., shortest path calculation
= affect convergence, heavy load

Distributed controller must handle both
network size and application heterogeneity

Previous work: topological slicing

= Conventional approach: topological slicing

= partition network topology: one physical controller for
each network partition

= all network functions run in each partition
X one-size-fits-all: all apps use same partition size

= Topological slicing co-locates all applications

= Computationally-intensive apps susceptible to load
spikes
X affects co-located real-time/latency-sensitive apps

X Administrative constraints on partition sizing

topological slicing is agnostic of application
heterogeneity and does not scale well

Hydra’s contributions

1. Functional slicing: split control plane applications across
servers

v adds new dimension to partitioning, more freedom for
placement

X Increase latency if critical paths span multiple servers

2. Communication-aware placement
= cast as optimization problem
v multi-constraint graph partitioning

3. Shields real-time apps from other apps
" uses thread prioritization

Hydra shows better performance for each app category
and scales better than topological slicing

Outline

= Background

" Hydra
" Goals
" Functional slicing
* Hybrid of functional and topological slicing
= Communication-aware placement

= Key results

= Conclusion

Topological slicing

= Network is partitioned into multiple controller domains

= Each controller instance hosts all control-plane apps
= but handles events only from switches in its partition

Server 2 f1() f2() f3() f4()

Server 1 l Server 4
() (. ()
f2() f2()
£3() \ T 30
f4() ﬁ/ f4()

Partition 1 | Partition 2 | Partition 3 | Partition 4
I
f1() f2() f3() f4() Server 3

Shortcomings of topological slicing

= Sustainable throughput limited
» compute/memory capacities of server must be sufficient
to handle all apps
= Possible solution: increase # of partitions

" Increasing # of partitions causes other problems
X Worsens convergence
* time to recalculate paths during link/switch failure
X Slow updates = Write-heavy apps suffer

Topological slicing co-locates all apps = requires higher #
of partitions = affects scalability

Outline

= Background

= Hydra
" Goals
" Functional slicing
* Hybrid of functional and topological slicing
= Communication-aware placement

= Key results

= Conclusion

Hydra: goals and techniques

1. Partitioning must help scalability without worsening state
convergence

" Functional slicing

2. Place applications without worsening latency
= Communication-aware placement

3. Isolate real-time applications from load spikes
= prioritize real-time apps over other apps

10

Functional slicing

= Split control-plane apps among multiple servers

Server 2 f2 ()

Server 1 I Server 4
f10) ™ ™ f4(
Partition 1

f3 () Server 3

v' Better convergence (apps have complete network state)

X Increases latency for events spanning >1 app

= e.g., handling a packet-in might could involve inter-
controller communication

Communication-aware placement

= Step-0: find partition size based on critical app(s)
= Typically, topology application is critical

= Determine app slice <> server mapping
" Objective: minimize latency
" subject to capacity and communication constraints

= [nputs
= applications” CPU, memory demand
= aggregate server CPU and memory capacity
" communication graph

= compute-intensive apps (e.g., topology app) placed in
separate machines to avoid interference

Mathematical formulation in the paper

12

Communication-aware placement (cont.)

" An instance of multi-constraint graph partitioning
=" 3 known NP hard problem
= use existing heuristics to solve in reasonable time

f1 f3

f2 f4

OmO
Om0O

13

Hydra’s approach: hybrid of functional and
topological slicing

» hybrid of topological and functional slicing

Communication-aware placement achieves better
convergence without increasing latency

14

Odds and ends

= Our model can be extended to accommodate
*" dynamic load changes
* replicated controllers (fault tolerance)

Details in the paper

15

Outline

= Background

" Hydra
" Goals
" Functional slicing
* Hybrid of functional and topological slicing
= Communication-aware placement

= Key results

= Conclusion

16

Methodology

= Floodlight controller
= Apps
= Dijkstra's shortest path computation (DJ)
" Firewall (FW)
" Route lookup (RL)
=" Heartbeat handler (HB)
» Modified CBench = load generation
= Mininet models control plane = doesn’t scale
= Topology
= Datacenter network - fat-tree
= ~2500 switches

17

Convergence time

120

100 -

(00)
o
|

Convergence time (s)
B ()]
o o

N
o
|

0 4 8 12 16 20 24 28 32 36
Number of partitions

Topological slicing requires higher # partitions = worsens
convergence

18

CPU demand

—Idle —DJ (4P) ----DJ (8P) —-DJ (16P)
....... DJ (32P) ——RL ——FW —HB (10/s)

50%
45%
40%
35%
30%
25% 1
15%
10%
5%

O% | I I T T
10000 20000 30000 40000 50000 60000
Load (packets/s)

DJ’s demand depends on # partitions;
other apps sensitive to network load (packet-in)

19

Placement results

= Available capacity: 4 servers, 4 cores per server

» Topological partitioning co-locates all apps =2 requires
>= 16 partitions

= 16 partitions = 16 controller instances = one per core

* Functional slicing reduces demand
- Hydra requires fewer than 16 partitions (i.e., 8)

= each partition hosts two controller instances

" Packet-in pipeline: communication between RL and
FW - one for DJ, one for {RL, FW, HB}

=" HB is prioritized over other apps

20

Hydra’s scalability

70000
60000
H
£ 75 50000
D c
3 3
£ © 40000
02
@ 2 30000
°®
- Q
S = 20000
@)
10000
O T T T T T

10000 20000 30000 40000 50000 60000
Load (packets/second)

Hydra scales better than topological slicing by
isolating compute-intensive apps from other apps

21

Real-time performance

: < : : : :
. A
. &‘
. ~
O . ~
. B e e e e e s

CDF

0.4 f e e — R — T —

02 | S | T Mo

0 20 40 60 80 100
Heart-beat Latency (ms)

Hydra’s thread prioritization isolates

heart-beats from other apps

22

Conclusion

Hydra is framework for distributing SDN functions
" [ncorporates functional slicing

= Communication-aware placement

" Thread prioritization

= Results show importance of Hydra’s key ideas

" Future work
" Infer communication graph using program analysis
" [ncorporate apps’ consistency requirements into model

Hydra’s gains potentially higher in large scale deployments

23

