
Composing Middlebox
and Traffic Engineering

Policies in SDNs
Yiyang Chang*, Gustavo Petri†, Sanjay Rao*, and Tiark Rompf*

*Purdue University, †LIAFA — Université Paris Diderot

IEEE INFOCOM SWFAN 2017

Motivation
• Middlebox deployment is common in enterprise

and ISP networks

• Both capital cost and management cost are huge

• Different IT teams manage different classes of
middleboxes

• How to integrate different requirements?

2

Composition is Non-trivial
• Alice manages routing module

• Implements a shortest-path
algorithm

• Bob manages IDS module

• Enforces a policy that all
traffic should traverse an IDS

• Could these modules be easily
composed without Alice and
Bob being explicitly aware of
their respective
implementations?

Shortest-path  
routing

All traffic traverse  
an IDS

How to integrate?
Alice

Bob

3

Why is Existing Solution Not
Sufficient?

• Pyretic first computes paths in
a general purpose language,
and composition is done after
generating the paths

• But, things can easily go
wrong!

• Composition should be done
prior to generating packet-
forwarding policies

IDS

Shortest path

4

Our Solution
• We investigate an approach where compositionality

is supported prior to the generation of packet
forwarding policies

• Each application is written as a logic program, and
provides a set of requirements that must be
respected by a synthesized solution

• A constraint solving engine iterates over these
requirements to search the solution space and find
a solution respecting all the requirements.

5

From Requirements to Rules

Source to SMT translation

SMT solution

Packet-Forwarding Policy
Generation

Source Code

(a)

SMT Input

(b)

(c)

SMT Model Packet-Fwd
Policy

(d)

Requirements

OpenFlow Rules
6

Composing Requirements -
Revisit the Example

• Alice: Route from ha to hb

• route(ha, hb, X)

• Possible solution: X = [s1, s2, s5],
but fails to enforce IDS.

• Bob: All routes go through IDS

• hasIDS([s3 | X]). 
hasIDS([S | X]) :- hasIDS(X). 
routeIDS(ha, hb, X) :-  
 route(ha, hb, X), hasIDS(X).

• X = [s1, s3, s4, s5]

s3: IDS

Shortest path

ha hb

s4

s5s1

s2

7

Translating Requirements to
Constraints

• Naive composition may not
work!

• Classic shortest-path
formulation (logic form)

• xi,j = 1 if link <i, j> is in the
path

• Minimize the sum of all xi,j

• Add middlebox (node w)
constraints 

8

• Solution contains a 
disconnected loop!

• We need a formulation  
supporting composition

node w

ha hb

Walk-based Shortest Path
Formulation

9

• Walk-based shortest path
formulation: Find a valid walk
from a source node s to
destination node d.

• Walk formulation explicitly
prevents the disconnected
loop

• Now safe for composition
with middlebox requirements

node w

ha hb

Walk-based Shortest Path
Formulation

Source node s is scheduled first.

If node i is visited in step k, and j is visited
in step k + 1, an edge must exist between

nodes i and j.

The last node of the walk is destination
node d. The walk has exactly k steps.

At most one node is visited in step k.

If node i is visited in step k, the walk has at
least k steps.

The destination node d exists in the path
and eliminates trivial solutions.

10

Safely Composing
Middlebox Requirements

• Translation of hasIDS()

The node w must be traversed.

One of multiple IDS nodes in set W is traversed.

Node w1 must be traversed prior to w2.

11

More Composition Scenarios

• Bounding link utilization

• Multi-path routing

• Soft requirements to aid conflict resolution

12

Preliminary Results
• Path computation

• Shortest-path

• Shortest-path traversing a middlebox

• Implemented the walk-based formulation in
Microsoft Z3 SMT solver (Python API)

• Evaluated with K-ary fat-tree topologies

13

Running time
K # of nodes Shortest-

path (sec)
1-middlebox

(sec)

4 20 0.08526 0.3298

8 80 2.226 11.94

12 180 40.67 262.6

16 320 285.3 725.2

20 500 2037 3978

• Running time of finding the
shortest path, and the shortest
path traversing one middlebox
on different K-ary fat-trees

• The performance is acceptable
for moderate-sized topologies.

• Offline phase of traffic
engineering

• Much room for performance
improvement

14

Future Work
• Generality

• Application beyond traffic engineering

• Performance

• We demonstrated our framework with an SMT solver. It is interesting to
explore the performance trade-offs with alternative solving engines,
such as ILP solvers

• Source language

• Current input language has a Prolog-like syntax

• In the future we may consider a source level syntax more amenable to
network operators such as a user defined syntax for relational operators.

15

Conclusions
• In this paper, we have explored how middlebox

requirements may be incorporated in traffic
engineering and SDN applications in a
compositional manner.

• We have argued that doing so requires
composition prior to the generation of packet-
forwarding policies, in contrast to current
approaches that perform composition after packet-
forwarding policies are generated.

16

Thanks!
Questions?

